Our research enables applications such as low-cost sensing, point-of care medicine and many more. Our project collaboration brings together scientific publication on nanophononics:


2023
Capillary Assembly of Anisotropic Particles at Cylindrical Fluid–Fluid Interfaces

Jack L. Eatson, Jacob R. Gordon, Piotr Cegielski, Anna L. Giesecke, Stephan Suckow, Anish Rao, Oscar F. Silvestre, Luis M. Liz-Marzán, Tommy S. Horozov, and D. Martin A. Buzza Langmuir Article ASAP DOI: 10.1021/acs.langmuir.3c00016

Full Control of Plasmonic Nanocavities Using Gold Decahedra-on-Mirror Constructs with Monodisperse Facets

Shu Hu, Eoin Elliott, Ana Sánchez-Iglesias, Junyang Huang, Chenyang Guo, Yidong Hou, Marlous Kamp, Eric S. A. Goerlitzer, Kalun Bedingfield, Bart de Nijs, Jialong Peng, Angela Demetriadou, Luis M. Liz-Marzán, Jeremy J. Baumberg First published: 03 February 2023 https://doi.org/10.1002/advs.202207178

Molecular-Induced Chirality Transfer to Plasmonic Lattice Modes

Eric Sidney Aaron Goerlitzer, Mario Zapata-Herrera, Ekaterina Ponomareva, Déborah Feller, Aitzol Garcia-Etxarri, Matthias Karg, Javier Aizpurua, and Nicolas Vogel ACS Photonics Article ASAP DOI: 10.1021/acsphotonics.3c00174

Quantitative 3D Investigation of Nanoparticle Assemblies by Volumetric Segmentation of Electron Tomography Data Sets

Safiyye Kavak, Ajinkya Anil Kadu, Nathalie Claes, Ana Sánchez-Iglesias, Luis M. Liz-Marzán, Kees Joost Batenburg, and Sara Bals The Journal of Physical Chemistry C 2023 127 (20), 9725-9734 DOI: 10.1021/acs.jpcc.3c02017

Self-assembled colloidal gold nanoparticles as substrates for plasmon enhanced fluorescence

Oscar F. Silvestre, Anish Rao & Luis M. Liz-Marzán (2023) Self-assembled colloidal gold nanoparticles as substrates for plasmon enhanced fluorescence, European Journal of Materials, 3:1, DOI: 10.1080/26889277.2023.2202676

Photoluminescence upconversion in monolayer WSe2 activated by plasmonic cavities through resonant excitation of dark excitons

Mueller, N.S., Arul, R., Kang, G. et al. Photoluminescence upconversion in monolayer WSe2 activated by plasmonic cavities through resonant excitation of dark excitons. Nat Commun 14, 5726 (2023). https://doi.org/10.1038/s41467-023-41401-8

Quantum Plasmonics in Sub-Atom-Thick Optical Slots

Jeremy J. Baumberg, Ruben Esteban, Shu Hu, Unai Muniain, Igor V. Silkin, Javier Aizpurua, and Vyacheslav M. Silkin Nano Letters 2023 23 (23), 10696-10702 DOI: 10.1021/acs.nanolett.3c02537

Collective Mid-Infrared Vibrations in Surface-Enhanced Raman Scattering

Niclas S. Mueller, Rakesh Arul, Lukas A. Jakob, Matthew Oliver Blunt, Tamás Földes, Edina Rosta, and Jeremy J. Baumberg Nano Letters 2022 22 (17), 7254-7260 DOI: 10.1021/acs.nanolett.2c02806

In-Situ Spectro-Electrochemistry of Conductive Polymers Using Plasmonics to Reveal Doping Mechanisms

Jialong Peng, Qianqi Lin, Tamás Földes, Hyeon-Ho Jeong, Yuling Xiong, Charalampos Pitsalidis, George G. Malliaras, Edina Rosta, and Jeremy J. Baumberg ACS Nano 2022 16 (12), 21120-21128 DOI: 10.1021/acsnano.2c09081

Stark Effect Control of the Scattering Properties of Plasmonic Nanogaps Containing an Organic Semiconductor

Donatello Pagnotto, Alina Muravitskaya, David M. Benoit, Jean-Sebastien G. Bouillard, and Ali M. Adawi ACS Applied Optical Materials 2023 1 (1), 500-506 DOI: 10.1021/acsaom.2c00135

Giant optomechanical spring effect in plasmonic nano- and picocavities probed by surface-enhanced Raman scattering

Jakob, L., Deacon, W. M., Zhang, Y., De Nijs, B., Pavlenko, E., Hu, S., Carnegie, C., Neuman, T., Esteban, R., Aizpurua, J., & Baumberg, J. J. (2023). Research data supporting “Giant optomechanical spring effect in plasmonic nano- and picocavities probed by surface-enhanced Raman scattering”. Apollo - University of Cambridge Repository. https://doi.org/10.17863/CAM.95259

Enhanced Photocurrent and Electrically Pumped Quantum Dot Emission from Single Plasmonic Nanoantennas

Junyang Huang, Shu Hu, Dean Kos, Yuling Xiong, Lukas A. Jakob, Ana Sánchez-Iglesias, Chenyang Guo, Luis M. Liz-Marzán, and Jeremy J. Baumberg ACS Nano 2024 18 (4), 3323-3330 DOI: 10.1021/acsnano.3c10092

2022
DNA-Templated Ultracompact Optical Antennas for Unidirectional Single-Molecule Emission

Fangjia Zhu, María Sanz-Paz, Antonio I. Fernández-Domínguez, Xiaolu Zhuo, Luis M. Liz-Marzán, Fernando D. Stefani, Mauricio Pilo-Pais, and Guillermo P. Acuna Nano Letters 2022 22 (15), 6402-6408 DOI: 10.1021/acs.nanolett.2c02424

Trapping plasmonic nanoparticles with MHz electric fields

Harlaftis, F., Kos, D., Lin, Q., Lim, K., Dumesnil, C., & Baumberg, J. (2022). Trapping plasmonic nanoparticles with MHz electric fields. Applied Physics Letters https://doi.org/10.1063/5.0091763

Vibrational Stark Effects: Ionic Influence on Local Fields

J. Phys. Chem. Lett. 2022, 13, 22, 4905–4911 Publication Date:May 27, 2022 https://doi.org/10.1021/acs.jpclett.2c01048

Optical suppression of energy barriers in single molecule-metal binding

Qianqi Lin, Shu Hu, Tamás Földes, Junyang Huang, Demelza Wright, Jack Griffiths, Bart de Nijs, Edina Rosta, Jeremy J. Baumberg

Stark Effect Control of the Scattering Properties of Plasmonic Nanogaps Containing an Organic Semiconductor

Donatello Pagnotto, Alina Muravitskaya, David M. Benoit, Jean-Sebastien G. Bouillard, and Ali M. Adawi ACS Applied Optical Materials 2023 1 (1), 500-506 DOI: 10.1021/acsaom.2c00135

2021
Complex plasmon-exciton dynamics revealed through quantum dot light emission in a nanocavity

O. Bitton, T. Neuman, R. Esteban, L. Chuntonov, J. Aizpurua, and G. Haran, “Complex plasmon-exciton dynamics revealed through quantum dot light emission in a nanocavity,” doi: 10.1038/s41467-021-21539-z.

Plasmon-induced Trap State Emission from Single Quantum Dots

J. Huang et al., “Plasmon-Induced Trap State Emission from Single Quantum Dots,” Phys. Rev. Lett., vol. 126, no. 4, 2021, doi: 10.1103/PhysRevLett.126.047402.

Förster Resonance Energy Transfer and the Local Optical Density of States in Plasmonic Nanogaps

A. O. Hamza, F. N. Viscomi, J.-S. G. Bouillard, and A. M. Adawi, “Förster Resonance Energy Transfer and the Local Optical Density of States in Plasmonic Nanogaps,” J. Phys. Chem. Lett., vol. 12, no. 5, pp. 1507–1513, 2021, doi: 10.1021/acs.jpclett.0c03702.

The Beginner's Guide to Chiral Plasmonics: Mostly Harmless Theory and the Design of Large-Area Substrates

E. S. A. Goerlitzer, A. S. Puri, J. J. Moses, L. V. Poulikakos, and N. Vogel, “The Beginner’s Guide to Chiral Plasmonics: Mostly Harmless Theory and the Design of Large-Area Substrates,” Adv. Opt. Mater., vol. 2100378, 2021, doi: 10.1002/adom.202100378

Nanoimprint Lithography Facilitated Plasmonic-Photonic

V. Gupta et al., “Nanoimprint Lithography Facilitated Plasmonic-Photonic Coupling for Enhanced Photoconductivity and Photocatalysis,” Adv. Funct. Mater., 2021, doi: 10.1002/adfm.202105054

Defined core–shell particles as the key to complex interfacial self-assembly

J. Menath, J. Eatson, R. Brilmayer, A. Andrieu-Brunsen, D. M. A. Buzza, and N. Vogel, ”Defined core–shell particles as the key to complex interfacial self-assembly”, Proceedings of the National Academy of Sciences, December 28, 2021, 118 (52), doi: 10.1073/pnas.2113394118

Förster Resonance Energy Transfer Rate and Efficiency in Plasmonic Nanopatch Antennas

Dr. Abdullah O. Hamza,Dr. Jean-Sebastien G. Bouillard,Dr. Ali M. Adawi, “Förster Resonance Energy Transfer Rate and Efficiency in Plasmonic Nanopatch Antennas,” ChemPhotoChem, 02 February 2022, https://doi.org/10.1002/cptc.202100285

Adsorption trajectories of nonspherical particles at liquid interfaces

S. O. Morgan, J. Fox, C. Lowe, A. M. Adawi, J.-S. G. Bouillard, G. J. Stasiuk, T. S. Horozov, and D. M. A. Buzza Phys. Rev. E 103, 042604 – Published 12 April 2021

Electronic Exciton–Plasmon Coupling in a Nanocavity Beyond the Electromagnetic Interaction Picture

Antton Babaze*Antton Babaze Materials Physics Center CSIC-UPV/EHU, Paseo Manuel de Lardizabal 5, 20018 Donostia-San Sebastián, Spain Donostia International Physics Center DIPC, Paseo Manuel de Lardizabal 4, 20018 Donostia-San Sebastián, Spain *Email: anttonbabaze@dipc.org More by Antton Babaze Orcidhttps://orcid.org/0000-0002-9775-062X , Ruben Esteban, Andrei G. Borisov, and Javier Aizpurua*

Tracking interfacial single-molecule pH and binding dynamics via vibrational spectroscopy

JUNYANG HUANG HTTPS://ORCID.ORG/0000-0001-6676-495XDAVID-BENJAMIN GRYS HTTPS://ORCID.ORG/0000-0002-4038-6388JACK GRIFFITHSBART DE NIJS HTTPS://ORCID.ORG/0000-0002-8234-723X MARLOUS KAMP HTTPS://ORCID.ORG/0000-0003-4915-1312QIANQI LIN HTTPS://ORCID.ORG/0000-0001-7578-838XAND JEREMY J. BAUMBERG

Locating Single-Atom Optical Picocavities Using Wavelength-Multiplexed Raman Scattering.

Griffiths, J., de Nijs, B., Chikkaraddy, R., & Baumberg, J. J. (2021). Locating Single-Atom Optical Picocavities Using Wavelength-Multiplexed Raman Scattering.. ACS Photonics, 8 (10), 2868-2875. https://doi.org/10.1021/acsphotonics.1c01100

Kinetic Regulation of the Synthesis of Pentatwinned Gold Nanorods below Room Temperature

J. Phys. Chem. C 2021, 125, 43, 23937–23944 Publication Date:October 22, 2021 https://doi.org/10.1021/acs.jpcc.1c07284

Interfering Plasmons in Coupled Nanoresonators to Boost Light Localization and SERS.

Xomalis, A., Zheng, X., Demetriadou, A., Martínez, A., Chikkaraddy, R., & Baumberg, J. J. (2021). Interfering Plasmons in Coupled Nanoresonators to Boost Light Localization and SERS.. Nano Lett, 21 (6), 2512-2518. https://doi.org/10.1021/acs.nanolett.0c04987

Detecting mid-infrared light by molecular frequency upconversion with dual-wavelength hybrid nanoantennas

Angelos Xomalis, Xuezhi Zheng, Rohit Chikkaraddy, Zsuzsanna Koczor-Benda, Ermanno Miele, Edina Rosta, Guy A E Vandenbosch, Alejandro Martínez, Jeremy J Baumberg

Accessing Plasmonic Hotspots Using Nanoparticle-on-Foil Constructs.

Chikkaraddy, R., & Baumberg, J. J. (2021). Accessing Plasmonic Hotspots Using Nanoparticle-on-Foil Constructs.. ACS Photonics, 8 (9), 2811-2817. https://doi.org/10.1021/acsphotonics.1c01048

Mid-infrared-perturbed molecular vibrational signatures in plasmonic nanocavities.

Chikkaraddy, R., Xomalis, A., Jakob, L. A., & Baumberg, J. (2022). Mid-infrared-perturbed molecular vibrational signatures in plasmonic nanocavities.. Light Sci Appl, 11 (1) https://doi.org/10.1038/s41377-022-00709-8

Energy- resolved plasmonic chemistry in individual nanoreactors

Oksenberg, E., Shlesinger, I., Xomalis, A. et al

2020
Chiral Surface Lattice Resonances

Eric S. A. Goerlitzer, Reza Mohammadi, Sergey Nechayev, Kirsten Volk, Marcel Rey, Peter Banzer, Matthias Karg, Nicolas Vogel, “Chiral Surface Lattice Resonances,” Adv. Mater., vol. 32, no. 22, 2020, doi: 10.1002/adma.202001330.

Controlling Optically Driven Atomic Migration Using Crystal-Facet Control in Plasmonic Nanocavities

A. Xomalis et al., “Controlling Optically Driven Atomic Migration Using Crystal-Facet Control in Plasmonic Nanocavities,” ACS Nano, vol. 14, no. 8, pp. 10562–10568, 2020, doi: 10.1021/acsnano.0c04600.